# Retrofit in Refrigeration

Andreas Walter | ZIEHL-ABEGG SE | Global President Product Unit Aftersales & Service







### **Andreas Walter**

ZIEHL-ABEGG SE | Global President Product Unit Aftersales & Service

AMCA European Fan Symposium 2024



### **Biography**

**Since 1987 at ZIEHL-ABEGG SE** 

1987 – 1996: Vocational education & dual studies in Electrical Engineering | Ventilation Product Development

**Until 2002: Project Engineer in Sales** 

Until 2023: Area Sales Manager & Key Account Manager

2020-2023: Responsible for international business development of Retrofit

Since 2024: Global President Product Unit Aftersales & Service

AMCA European Fan Symposium 2024

#### **Retrofit in Refrigeration**

01

Potential of Retrofit in Refrigeration Systems

03

**Key Points to be considered in Retrofit Projects** 

**05**Call to action

**02** 

Conditioned Air: Cost Analysis of Old & New Systems

04

Challenges within a Retrofit Project





# 01 **Potential of Retrofit in** Refrigeration **Systems**

#### **Potential of Refrigeration Systems in Europe**

- ~ 40 % of the total energy consumption in Europe is dedicated to the building sector
- More than 1/3<sup>rd</sup> are non-residential buildings
  - A large proportion is used for HVAC systems
  - O A large proportion is just used from fans
- Improvements are crucial to achieve the goal of the Green Deal by 2050
- Renovating the buildings would reduce the overall energy consumption in Europe by 5-6%
- Only between 0.4 1.2% of the European buildings necessary to be renovated are renovated
- With this speed, we will miss the given targets 2050







#### **Potential of Refrigeration Systems in Germany**

- The German GEG (building energy) law states
  - building operators are obligated to inspect their HVAC systems with ≥ 12 kW of cooling capacity every ten years
- Estimation in Germany
  - 320.000 420.000 HVAC systems with
     ≥ 12 kW of cooling power which need to be inspected
  - 480.000 630.000 AHU's with < 12 kW of cooling power which <u>should</u> also be inspected





#### All building types are relevant!

- Warehouses
- Universities/School buildings
- Airports
- Offices
- Hospitals
- Datacenter
- Production buildings
- Shopping Centers
- Supermarkets
- Hotels
- ..





All building types are relevant!

- Warehouses
- Universities/School buildings
- Airports
- Offices
- Hospitals
- Datacenter
- Production buildings
- Shopping Centers
- Supermarkets
- Hotels
- .





#### **Potential of Improvement**

- HVAC: More than 50% of all energy inspections recommend to replace at least the inefficient fans
- HVAC: In average ~ 50 % energy saving is technically achievable, if efficient components would be combined with a demand-based control
- Potential savings in German's HVAC systems, considering all possible optimization measures
  - o 12.5 TWh of electricity p.a.
  - o 12.9 million tons of  $CO_2$  p.a.

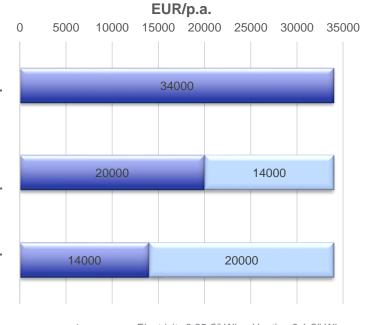
(Power consumption of Hamburg is 10 TWh p.a.) (1 beech tree can save around 12,5 kg of  $CO_2$  p.a.)





[FGK]




# **02 Conditioned Air: Cost Analysis of** Old & New **Systems**

#### **Yearly costs of an AHU with 20.000 m³/h (only heating)**

status quo approx. 34.000 EUR/p.a.

with demand-based control optimization approx. 20.000 EUR/p.a.

after equipment modernisation approx. 14.000 EUR/p.a.



■running costs
■savings

Electricity 0,25 €/kWh Heating 0,1 €/kWh

[IBDM Detlef Malinowsky]





# 03 **Key Points to be Considered** in Retrofit **Projects**

#### **Key Points to be considered in Retrofit Projects**

- Does the application still work?
- How old is the equipment?
  - o System information available?
- Does the current operating point cover the actual demand?
- How is the load profile of the unit?
- Is there a demand-driven control system in place or not?
  - O Sensors are available / do they work?
- What is the focus of the customer?
  - Efficiency
  - Acoustics
  - Redundancy

• .







# O4 Challenges within a Retrofit Project

#### **Challenges: Assessment of the Project**

- How are the circumstances of the application?
  - Accessibility
  - If / when is the downtime accepted
- Realtime measurements
  - Pressure
  - Airflow
  - power consumption
  - available space
- What is part of the project
  - Fan exchange
  - Filter system/Desinfection devices
  - Heat recovery
  - Potential Add-Ons: Heating/Cooling
  - 0





#### **Challenges: Planning**

- Selection of the right fans and equipment in order to fulfill all customer requirements
  - (efficiency acoustics redundancy)
- Potential access into an existing or a modernized BMS
- Planning of
  - the logistics in the building
  - access for the team
  - o dismantling and transport of the old equipment
- Time schedule:
  - Availability of the new equipment
  - Availability of the different workforces
  - Coordination of downtime





#### TELEVISION SWITZERLAND



REDUCTION OF **ENERGY** CONSUMPTION 62 %





3,8 years



ANNUAL CO2 REDUCTION

78 t







#### **PROJECT DATA**

**GENERAL DATA** 



17.400 m<sup>3</sup>/h



30 Pa



6570 h/p.a.

**OLD SITUATION** 

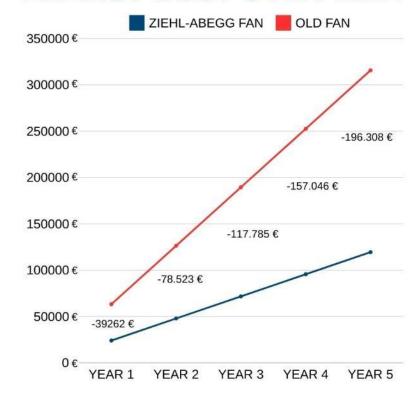


60 x FN100-ADS.7M.V5P1



332.271 kWh/p.a.

**NEW SITUATION** 




60 x ZN100-ZIL.GG.V5P1



125.631 kWh/p.a.

#### **ENERGY COST OVER TIME**





#### Side effect of a successful retrofit project

- Invest the saved money in further retrofit projects
- Increase the value of the building
- Increase the appeal for the tenants
- Get the building ready for future requirements regarding efficiency and automation
- Enable remote monitoring
  - O Service on demand / predictive maintenance / less operating costs
- Redundancy + operational security
- Support the health & productivity of the tenants / workers
- Improve the public image of the operator / Carbon footprint
- Positive impact into the sustainability report
- ...





### 05 Call to action

#### **Call to action**

- Modernization is a must for the entire society!
- Investments in modernization pay themselves off in a short time
- The benefits outweigh the risk

#### Doing nothing means going backwards!



#### **Call to action**

- Modernization is a mus
   The tire society
- Investments in mode Lation themselve in a short time
- The benefits outweit the risk

### Doing nothing mean going backwards!

How does your like?
equipment look like?





### Thank you!

Do you have any questions?

Andreas.Walter@Ziehl-Abegg.de +49 7940 16 614

https://www.ziehl-abegg.com/en/







AMCA European Fan Symposium 2024